[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342701
a(n) is the second smallest k such that phi(n+k) = phi(k), or 0 if no such solution exists.
3
3, 7, 5, 14, 9, 34, 7, 16, 15, 26, 11, 68, 39, 28, 15, 32, 33, 72, 25, 40, 35, 56, 17, 101, 45, 37, 45, 56, 29, 152, 31, 61, 39, 56, 35, 144, 37, 61, 39, 74, 41, 128, 35, 88, 45, 161, 47, 192, 49, 82, 51, 74, 95, 216, 43, 97, 75, 203, 59, 304, 91, 88, 63, 122
OFFSET
1,1
COMMENTS
Sierpiński (1956) proved that there is at least one solution for all n>=1.
Schinzel (1958) proved that there are at least two solutions k to phi(n+k) = phi(k) for all n <= 8*10^47. Schinzel and Wakulicz (1959) increased this bound to 2*10^58.
Schinzel (1958) observed that under the prime k-tuple conjecture there is a second solution for all even n.
Holt (2003) proved that there is a second solution for all even n <= 1.38 * 10^26595411.
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, section B36, page 138-142.
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 3, p. 217-219.
Wacław Sierpiński, Sur une propriété de la fonction phi(n), Publ. Math. Debrecen, Vol. 4 (1956), pp. 184-185.
LINKS
Jeffery J. Holt, The minimal number of solutions to phi(n)=phi(n+k), Math. Comp., Vol. 72, No. 244 (2003), pp. 2059-2061.
Andrzej Schinzel, Sur l'équation phi(x + k) = phi(x), Acta Arith., Vol. 4, No. 3 (1958), pp. 181-184.
Andrzej Schinzel and Andrzej Wakulicz, Sur l'équation phi(x+k)=phi(x). II, Acta Arith., Vol. 5, No. 4 (1959), pp. 425-426.
Eric Weisstein's World of Mathematics, k-Tuple Conjecture.
EXAMPLE
a(1) = 3 since the solutions to the equation phi(1+k) = phi(k) are k = 1, 3, 15, 104, 164, ... (A001274), and 3 is the second solution.
MATHEMATICA
f[n_, 0] = 0; f[n_, k0_] := Module[{k = f[n, k0 - 1] + 1}, While[EulerPhi[n + k] != EulerPhi[k], k++]; k]; Array[f[#, 2] &, 100]
PROG
(PARI) a(n) = my(k=1, nb=0); while ((nb += (eulerphi(n+k)==eulerphi(k))) != 2, k++); k; \\ Michel Marcus, Mar 19 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 18 2021
STATUS
approved