[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342128
Table read by antidiagonals upwards: T(n,k) is the number of n-colorings of the vertices of the k-dimensional hypercube such that no two adjacent vertices have the same color. n >= 0, k >=0.
0
0, 1, 0, 2, 0, 0, 3, 2, 0, 0, 4, 6, 2, 0, 0, 5, 12, 18, 2, 0, 0, 6, 20, 84, 114, 2, 0, 0, 7, 30, 260, 2652, 2970, 2, 0, 0, 8, 42, 630, 29660, 1321860, 1185282, 2, 0, 0, 9, 56, 1302, 198030, 187430900, 130253748108, 100301050602, 2, 0, 0, 10, 72, 2408, 932862, 10199069190, 2157531034816940
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Chromatic Polynomial
Eric Weisstein's World of Mathematics, Hypercube Graph
FORMULA
T(n,k) = Sum_{i=0..2^k} A334278(k,i)*n^i.
EXAMPLE
Table begins:
n\k| 0 1 2 3 4 5
---+-----------------------------------------------------------------------
0 | 0 0 0 0 0 0
1 | 1 0 0 0 0 0
2 | 2 2 2 2 2 2
3 | 3 6 18 114 2970 1185282
4 | 4 12 84 2652 1321860 130253748108
5 | 5 20 260 29660 187430900 2157531034816940
6 | 6 30 630 198030 10199069190 7905235551766437150
7 | 7 42 1302 932862 269591166222 7365707045872206479742
8 | 8 56 2408 3440024 4221404762120 2337101560809838105414712
9 | 9 72 4104 10599192 44876701584360 327425229254999498091796728
10 | 10 90 6570 28478970 355148098691850 24489214732779742874109277530
CROSSREFS
Columns and rows: A002378 (k=1), A091940 (k=2), A140986 (k=3), A158348 (k=4), A307334 (n=3).
Cf. A334278, A342088 (analogous for cross-polytope).
Sequence in context: A259827 A143161 A225853 * A330463 A142886 A374019
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Feb 28 2021
STATUS
approved