[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341960
G.f. A(x) satisfies: A(x) = Product_{n>=0} (1-x^(5*n+1)*A(x)) * (1-x^(5*n+4)*A(x)) / ( (1-x^(5*n+2)*A(x)) * (1-x^(5*n+3)*A(x)) ).
1
1, -1, 2, -3, 5, -9, 17, -35, 78, -180, 424, -1007, 2397, -5717, 13671, -32808, 79074, -191458, 465654, -1137279, 2788086, -6858079, 16919890, -41856203, 103796588, -257976965, 642512314, -1603329098, 4008201233, -10037187453, 25174707801, -63236031835, 159064703284
OFFSET
0,3
COMMENTS
Compare to Ramanujan's continued fraction (A007325): R(x) = Product_{n>=0} (1 - x^(5*n+1))*(1 - x^(5*n+4)) / ( (1 - x^(5*n+2))*(1 - x^(5*n+3)) ) = 1/(1 + x/( 1 + x^2/( 1 + x^3/( 1 + x^4/ ... )))).
EXAMPLE
G.f.: A(x) = 1 - x + 2*x^2 - 3*x^3 + 5*x^4 - 9*x^5 + 17*x^6 - 35*x^7 + 78*x^8 - 180*x^9 + 424*x^10 - 1007*x^11 + 2397*x^12 - 5717*x^13 + 13671*x^14 + ...
PROG
(PARI) {a(n) = my(A=1); for(i=1, n,
A = prod(m=0, n, (1-x^(5*m+1)*A)*(1-x^(5*m+4)*A)/((1-x^(5*m+2)*A)*(1-x^(5*m+3)*A +x*O(x^n) )) ) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A007325.
Sequence in context: A166286 A179807 A110113 * A137155 A014227 A378252
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 16 2021
STATUS
approved