[go: up one dir, main page]

login
A341093
Triangular array read by rows. T(n,k) is the number of partial functions on [n] with index k, n=0 implies k=1, otherwise n >= 1, 1 <= k <= n.
0
1, 2, 7, 2, 37, 21, 6, 261, 232, 108, 24, 2301, 2935, 1760, 660, 120, 24343, 42396, 30630, 14880, 4680, 720, 300455, 692055, 586572, 335790, 139440, 37800, 5040, 4238153, 12631200, 12387592, 8008896, 3959760, 1438080, 342720, 40320
OFFSET
0,2
COMMENTS
For every partial function f, there are smallest positive integers k,m such that f^k = f^(k+m). The integer k is the index of f.
EXAMPLE
Array begins
1;
2;
7, 2;
37, 21, 6;
261, 232, 108, 24;
2301, 2935, 1760, 660, 120;
24343, 42396, 30630, 14880, 4680, 720;
...
MATHEMATICA
nn = 8; np = Exp[NestList[x Exp[#] &, x, nn]]; fp = Exp[Log[1/(1 - NestList[x Exp[#] &, x Exp[x], nn])]]; Map[Select[#, # > 0 &] &, Prepend[Table[Range[0, nn]! CoefficientList[Series[(fp[[k + 1]] - fp[[k]])*(np[[k + 1]]) + (fp[[k + 1]])*(np[[k + 1]] - np[[k]]) - (fp[[k + 1]] - fp[[k]]) (np[[k + 1]] - np[[k]]), {x, 0, nn}], x], {k, 1, nn - 1}], Range[0, nn]! CoefficientList[Series[1/(1 - x Exp[x])*Exp[x], {x, 0, nn}], x]] // Transpose] // Grid
CROSSREFS
Cf. A072597 (column k=1), A000169(n+1) (row sums).
Sequence in context: A282454 A282655 A282803 * A248683 A110987 A199740
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Feb 13 2022
STATUS
approved