[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340392
Primes of the form Sum_{k=i..j} k^k.
1
5, 31, 283, 3413, 50069, 17650823, 10405071317, 449317973725128511, 18895749970915969007, 18896062057839748031, 846136323944176515589, 40192544390028896900861, 40192544398944997349117, 40192544399240696440217, 208492413443704093346554910065262730566475781
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 5 = 1^1 + 2^2 is prime.
a(2) = 31 = 2^2 + 3^3 is prime.
a(3) = 283 = 3^3 + 4^4 is prime.
a(4) = 3413 = 1^1 + 2^2 + 3^3 + 4^4 + 5^5 is prime.
a(5) = 50069 = 1^1 + 2^2 + 3^3 + 4^4 + 5^5 + 6^6 is prime.
a(6) = 17650823 = 3^3 + 4^4 + 5^5 + 6^6 + 7^7 + 8^8 is prime.
MAPLE
B:= [0, seq(i^i, i=1..100)]:
S:= ListTools:-PartialSums(B):
R:=select(t -> t < 101^101 and isprime(t), {seq(seq(S[i]-S[j], j=1..i-1), i=2..101)}):
sort(convert(R, list));
CROSSREFS
Cf. A073826.
Sequence in context: A296967 A347416 A292462 * A360774 A176302 A129586
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 05 2021
STATUS
approved