[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349879
Expansion of Sum_{k>=0} k^4 * x^k/(1 - k * x).
3
0, 1, 17, 114, 564, 2507, 10961, 49260, 231928, 1150781, 6017297, 33085294, 190777804, 1150650935, 7241707281, 47454741400, 323154690928, 2282779984281, 16700904481425, 126356632381834, 987303454919204, 7957133905597635, 66071772829234641
OFFSET
0,3
COMMENTS
In general, for s>=1, Sum_{k=0..n} k^(n-k+s) ~ a(n) ~ sqrt(2*Pi) * ((n + s)/LambertW(exp(1)*(n + s)))^(1/2 + (n + s)*(1 - 1/LambertW(exp(1)*(n + s)))) / sqrt(1 + LambertW(exp(1)*(n + s))). - Vaclav Kotesovec, Dec 04 2021
LINKS
FORMULA
a(n) = Sum_{k=0..n} k^(n-k+4).
a(n) ~ sqrt(2*Pi) * ((n + 4)/LambertW(exp(1)*(n + 4)))^(1/2 + (n + 4)*(1 - 1/LambertW(exp(1)*(n + 4)))) / sqrt(1 + LambertW(exp(1)*(n + 4))). - Vaclav Kotesovec, Dec 04 2021
MATHEMATICA
Table[Sum[k^(n - k + 4), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 04 2021 *)
PROG
(PARI) a(n, s=4, t=1) = sum(k=0, n, k^(t*(n-k)+s));
(PARI) my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^4*x^k/(1-k*x))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 03 2021
STATUS
approved