[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349415
Number of ways an n-set can be written as the union of 2 sets each with 4 or more elements and whose intersection contains exactly 3 elements.
0
10, 60, 245, 840, 2604, 7560, 20955, 56100, 146146, 372372, 931385, 2293200, 5569880, 13368528, 31751223, 74709900, 174324430, 403700220, 928512277, 2122315800, 4823447300, 10905187800, 24536675475, 54962156340, 122607890874, 272461983780, 603308682865, 1331439856800
OFFSET
5,1
COMMENTS
Starting at n=7, the terms in the sequence alternate one odd and 3 even.
FORMULA
a(n) = Sum_{j=4..n/2+1} binomial(n,j)*binomial(j,3), n even.
a(n) = (Sum_{j=4..ceiling(n/2)} binomial(n,j)*binomial(j,3)) + (1/2)*binomial(n,ceiling(n/2)+1)*binomial(ceiling(n/2)+1,3), n odd.
From Alois P. Heinz, Nov 16 2021: (Start)
a(n) = binomial(n,3) * Stirling2(n-3,2).
G.f.: x^5*(8*x^6 - 48*x^5 + 124*x^4 - 180*x^3 + 145*x^2 - 60*x + 10)/((2*x-1)^4*(x-1)^4). (End)
E.g.f.: (1/12)*x^3*(exp(x)-1)^2.
a(n) = 12*a(n-1) - 62*a(n-2) + 180*a(n-3) - 321*a(n-4) + 360*a(n-5) - 248*a(n-6) + 96*a(n-7) - 16*a(n-8). - Wesley Ivan Hurt, Dec 03 2021
EXAMPLE
a(5)=10 since [5] can be written as the union of the following sets: {1,2,3,4} U {1,2,3,5}, {1,2,3,4} U {1,2,4,5}, {1,2,3,4} U {1,3,4,5}, {1,2,3,4} U {2,3,4,5}, {1,2,3,5} U {1,2,4,5}, {1,2,3,5} U {1,3,4,5},{1,2,3,5} U {2,3,4,5}, {1,2,4,5} U {1,3,4,5}, {1,2,4,5} U {2,3,4,5}, {1,3,4,5} U {2,3,4,5}.
MAPLE
a:= n-> binomial(n, 3)*Stirling2(n-3, 2):
seq(a(n), n=5..32); # Alois P. Heinz, Nov 16 2021
MATHEMATICA
nterms=50; Table[Binomial[n, 3]*StirlingS2[n-3, 2], {n, 5, nterms+4}] (* Paolo Xausa, Nov 20 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Nov 16 2021
STATUS
approved