[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349414
a(n) = A324245(n) - n.
5
0, 1, -2, 2, -1, 3, -5, 4, -2, 5, -8, 6, -3, 7, -11, 8, -4, 9, -14, 10, -5, 11, -17, 12, -6, 13, -20, 14, -7, 15, -23, 16, -8, 17, -26, 18, -9, 19, -29, 20, -10, 21, -32, 22, -11, 23, -35, 24, -12, 25, -38, 26, -13, 27, -41, 28, -14, 29, -44, 30, -15, 31, -47, 32
OFFSET
0,3
COMMENTS
This uses a modified Collatz-Terras map, called f in the Vaillant and Delarue link. Odd k = 2*n+1; a(0) = 0 represents 1 "is done".
From Ruud H.G. van Tol, Dec 09 2021: (Start)
a(n) is given by cases according as r = n mod 4 is 0,1,2,3 so that the sequence can be taken as an array with row m = floor(n/4) and column r,
| 8m + 1 3 5 7 |
| m |r:0 1 2 3 |
+---+--------------+
| 0 | 0 1 -2 2 |
| 1 | -1 3 -5 4 |
| 2 | -2 5 -8 6 |
| 3 | -3 7 -11 8 |
...
All positive integers eventually reach 1 in the Collatz problem iff all nonnegative integers eventually reach 0 with repeated application of this map, i.e., if for all n, the sequence n, n+a(n), n+a(n+a(n)), n+a(n+a(n+a(n))), ... eventually hits 0 (by hitting any a(n) == -n).
Example for m = 1, r = 0: (8m+1) = 9; a(floor(9/2)) = a(4) = -1, which leads to (9 + 2*-1) = 7.
Notice that the "(8m+5) -> (8m+5-1) / 4 = (2k+1)" operation of the values for r == 2, is "shedding bits", similar to what division-by-2 does. Any trailing '101' of the odd is transformed to '1', so it is not performing a Collatz step itself, but it is "escaping the column".
a(n) = A246425(n) if r is in (0,1,3) (A047472). The values for r == 2 are (n' - n + a(n')), with n' derived as (n' = n; n' = floor(n' / 4) while (n' mod 4 == 2)). Example for 8m+5 == 53: n = (53 - 1) / 2 = 26; n' = ((26 -2)/4 -2)/4 = 1; A246425(26) = 1 - 26 + a(1) = -25 + 1 = -24.
(End)
LINKS
Nicolas Vaillant and Philippe Delarue, The hidden face of the 3x+1 problem. Part I: Intrinsic algorithm, April 26 2019.
FORMULA
a(n) = A324245(n) - n.
a(n) = (n+1)/2 if n is odd,
a(n) = -1*n/4 if n == 0 (mod 4),
a(n) = (n-2)/4 - n if n == 2 (mod 4).
Let r = n mod 4 and m = n div 4.
r=0: a(n) = -1*m = a(n-4)-1
r=1: a(n) = 2*m+1 = a(n-4)+2 = a(n-2)+1
r=2: a(n) = -3*m-2 = a(n-4)-3
r=3: a(n) = 2*m+2 = a(n-4)+2 = a(n-2)+1
The moving sum over 4 elements gives the sequence /1,0,-2,-1/.
From Wesley Ivan Hurt, Nov 16 2021: (Start)
a(n) = (1 - 3*(-1)^n - 4*n*(-1)^n + 2*(1+n)*cos(n*Pi/2))/8.
G.f.: x*(1 - x + x^2 + x^4)/((1-x)*(1 + x + x^2 + x^3)^2). (End)
From Stefano Spezia, Nov 17 2021: (Start)
a(n) = - a(n-1) - a(n-2) - a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7) for n > 6.
E.g.f.: (cos(x) + (2*x - 1)*cosh(x) - x*sin(x) - 2*(x - 1)*sinh(x))/4. (End)
a(n) >= - n. - Ruud H.G. van Tol, Dec 09 2021
EXAMPLE
a(1) = 1 -> a(1+1) = -2 -> a(1+1-2) = a(0) = 0, which represents 3 -> 5 -> 1.
MATHEMATICA
Table[(1 - 3 (-1)^n - 4 n (-1)^n + 2 (1 + n) Cos[n*Pi/2])/8, {n, 0, 100}] (* Wesley Ivan Hurt, Nov 16 2021 *)
LinearRecurrence[{-1, -1, -1, 1, 1, 1, 1}, {0, 1, -2, 2, -1, 3, -5}, 64] (* Stefano Spezia, Nov 17 2021 *)
PROG
(PARI)
A324245(n) = if(n%2, (1+3*n)/2, if(!(n%4), 3*(n/4), (n-2)/4));
A349414(n) = (A324245(n)-n); \\ Antti Karttunen, Dec 09 2021
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Ruud H.G. van Tol, Nov 16 2021
STATUS
approved