[go: up one dir, main page]

login
A348593
Triangle read by rows: T(n,m) = Sum_{j=0..min(m,n-m)} C(2j,j)*C(n-2j-1,m-j)*C(n-m,j)/(j+1).
0
1, 1, 1, 2, 1, 4, 1, 1, 6, 7, 1, 1, 8, 18, 6, 1, 1, 10, 34, 30, 7, 1, 1, 12, 55, 88, 33, 8, 1, 1, 14, 81, 195, 145, 42, 9, 1, 1, 16, 112, 366, 460, 184, 52, 10, 1, 1, 18, 148, 616, 1146, 763, 248, 63, 11, 1, 1, 20, 189, 960, 2422, 2544, 1060, 324, 75, 12, 1, 1, 22, 235, 1413, 4558, 6916, 4282, 1490, 413, 88, 13, 1
OFFSET
0,4
FORMULA
G.f.: (1-sqrt(1-4*x^2*y*(1-x*y)/(1-x-x*y)))/(2*x^2*y).
Sum_{m>=0} (-1)^m * T(n,m) = A307374(n). - Alois P. Heinz, Jan 26 2022
EXAMPLE
Triangle begins
1;
1;
1, 2;
1, 4, 1;
1, 6, 7, 1;
1, 8, 18, 6, 1;
1, 10, 34, 30, 7, 1;
1, 12, 55, 88, 33, 8, 1;
PROG
(Maxima) T(n, m):=sum(binomial(2*j, j)*binomial(n-2*j-1, m-j)*binomial(n-m, j)/(j+1), j, 0, min(m, n-m));
CROSSREFS
Row sums give A173992.
Sequence in context: A055327 A105260 A099510 * A211232 A137633 A168533
KEYWORD
nonn,tabf
AUTHOR
Vladimir Kruchinin, Jan 25 2022
STATUS
approved