[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348257
Number of ways we can write [n] as the union of 2 sets of sizes i, j which intersect in exactly 2 elements (2 < i,j < n; i = j allowed).
1
6, 30, 105, 315, 868, 2268, 5715, 14025, 33726, 79794, 186277, 429975, 982920, 2228088, 5013351, 11206485, 24903490, 55050030, 121110297, 265289475, 578813676, 1258290900, 2726297275, 5888802465, 12683574918, 27246198378, 58384711245, 124822486575, 266287971856, 566935682544
OFFSET
4,1
COMMENTS
The terms in the sequence alternate 2 even and 2 odd.
FORMULA
a(n) = (Sum_{j=3..n/2} binomial(n,j)*binomial(j,2)) + (1/2)*binomial(n,n/2+1) * binomial(n/2+1,2), if n is even.
a(n) = Sum_{j=3..ceiling(n/2)} binomial(n,j)*binomial(j,2), if n is odd.
G.f.: x^4*(6 - 24*x + 33*x^2 - 18*x^3 + 4*x^4)/((1 - x)^3*(1 - 2*x)^3). - Stefano Spezia, Oct 09 2021
a(n) = A000554(n)/2. - Enrique Navarrete, Nov 16 2021
a(n) = binomial(n,2) * Stirling2(n-2,2). - Alois P. Heinz, Nov 16 2021
EXAMPLE
a(4) = 6 since we can write [4] as the following unions: {1,2,3} U {1,2,4}, {1,2,3} U {1,3,4}, {1,2,3} U {2,3,4}, {1,2,4} U {1,3,4}, {1,2,4} U {2,3,4}, {1,3,4} U {2,3,4}.
MATHEMATICA
nterms=50; Table[Binomial[n, 2]*StirlingS2[n-2, 2], {n, 4, nterms+3}] (* Paolo Xausa, Nov 20 2021 *)
CROSSREFS
Sequence in context: A101375 A074007 A152573 * A353894 A353883 A258723
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Oct 08 2021
STATUS
approved