[go: up one dir, main page]

login
A347531
First of three consecutive primes p,q,r such that r^2-p^2+p, r^2-p^2+q and r^2-p^2+r are consecutive primes.
2
5, 19, 31, 97, 107, 1429, 1597, 1997, 2441, 2917, 3203, 3581, 3659, 3691, 3847, 7481, 8237, 8377, 8737, 9697, 11467, 12107, 12251, 14071, 17317, 17659, 18481, 18583, 21383, 21491, 23189, 24799, 30931, 33563, 34337, 37507, 38317, 38639, 38707, 39397, 40483, 41221, 43577, 43649, 45121, 46411, 51059
OFFSET
1,1
COMMENTS
Dickson's conjecture implies that there are infinitely many terms with, for example, the first three consecutive primes p, p+2, p+6 and the second three 13*p+36, 13*p+38 and 13*p+42.
LINKS
EXAMPLE
a(3) = 31 is a term because 31, 37, 41 are consecutive primes and 41^2-31^2+31 = 751, 41^2-31^2+37 = 757, 41^2-31^2+41 = 761 are consecutive primes.
MAPLE
R:= NULL: count:= 0:
q:= 2: r:= 3:
while count < 50 do
p:= q; q:= r; r:= nextprime(r);
d:= r^2 - p^2;
if isprime(p+d) and nextprime(p+d)=q+d and nextprime(q+d)=r+d then
count:= count+1; R:= R, p
fi
od:
R;
CROSSREFS
Sequence in context: A138242 A163076 A122729 * A356716 A262700 A243269
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Mar 10 2022
STATUS
approved