OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the reciprocal alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^i).
Also Heinz numbers integer partitions with integer reverse-reciprocal alternating product, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
The terms and their prime indices begin:
1: {} 32: {1,1,1,1,1} 65: {3,6}
2: {1} 34: {1,7} 72: {1,1,1,2,2}
4: {1,1} 36: {1,1,2,2} 74: {1,12}
6: {1,2} 38: {1,8} 81: {2,2,2,2}
8: {1,1,1} 39: {2,6} 82: {1,13}
9: {2,2} 40: {1,1,1,3} 84: {1,1,2,4}
10: {1,3} 46: {1,9} 86: {1,14}
14: {1,4} 49: {4,4} 87: {2,10}
16: {1,1,1,1} 50: {1,3,3} 88: {1,1,1,5}
18: {1,2,2} 54: {1,2,2,2} 90: {1,2,2,3}
21: {2,4} 56: {1,1,1,4} 94: {1,15}
22: {1,5} 57: {2,8} 96: {1,1,1,1,1,2}
24: {1,1,1,2} 58: {1,10} 98: {1,4,4}
25: {3,3} 62: {1,11} 100: {1,1,3,3}
26: {1,6} 64: {1,1,1,1,1,1} 104: {1,1,1,6}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
altprod[q_]:=Product[q[[i]]^(-1)^(i-1), {i, Length[q]}];
Select[Range[100], IntegerQ[1/altprod[primeMS[#]]]&]
CROSSREFS
Allowing any alternating product >= 1 gives A344609.
Factorizations of this type are counted by A347439.
Allowing any alternating product <= 1 gives A347450.
The non-reciprocal version is A347454.
A344606 counts alternating permutations of prime indices.
A347457 ranks partitions with integer alternating product.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 24 2021
STATUS
approved