%I #16 Oct 22 2023 16:43:04
%S 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,4,1,1,
%T 1,6,1,1,1,2,1,1,1,2,2,1,1,5,2,2,1,2,1,3,1,2,1,1,1,2,1,1,2,8,1,1,1,2,
%U 1,1,1,6,1,1,2,2,1,1,1,5,4,1,1,2,1,1,1,2,1,3,1,2,1,1,1,6,1,2,2,6,1,1,1,2,1,1,1,7
%N Number of factorizations of n with integer alternating product.
%C A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
%C We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
%H Antti Karttunen, <a href="/A347437/b347437.txt">Table of n, a(n) for n = 1..65537</a>
%H PlanetMath, <a href="https://planetmath.org/alternatingsum">alternating sum</a>
%F a(2^n) = A344607(n).
%F a(n^2) = A347458(n).
%e The factorizations for n = 4, 16, 36, 48, 54, 64, 108:
%e (4) (16) (36) (48) (54) (64) (108)
%e (2*2) (4*4) (6*6) (2*4*6) (2*3*9) (8*8) (2*6*9)
%e (2*2*4) (2*2*9) (3*4*4) (3*3*6) (2*4*8) (3*6*6)
%e (2*2*2*2) (2*3*6) (2*2*12) (4*4*4) (2*2*27)
%e (3*3*4) (2*2*2*2*3) (2*2*16) (2*3*18)
%e (2*2*3*3) (2*2*4*4) (3*3*12)
%e (2*2*2*2*4) (2*2*3*3*3)
%e (2*2*2*2*2*2)
%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
%t Table[Length[Select[facs[n],IntegerQ@*altprod]],{n,100}]
%o (PARI) A347437(n, m=n, ap=1, e=0) = if(1==n, if(e%2, 1==denominator(ap), 1==numerator(ap)), sumdiv(n, d, if((d>1)&&(d<=m), A347437(n/d, d, ap * d^((-1)^e), 1-e)))); \\ _Antti Karttunen_, Oct 22 2023
%Y Positions of 1's are A005117, complement A013929.
%Y Allowing any alternating product <= 1 gives A339846.
%Y Allowing any alternating product > 1 gives A339890.
%Y The restriction to powers of 2 is A344607.
%Y The even-length case is A347438, also the case of alternating product 1.
%Y The reciprocal version is A347439.
%Y Allowing any alternating product < 1 gives A347440.
%Y The odd-length case is A347441.
%Y The reverse version is A347442.
%Y The additive version is A347446, ranked by A347457.
%Y Allowing any alternating product >= 1 gives A347456.
%Y The restriction to perfect squares is A347458, reciprocal A347459.
%Y The ordered version is A347463.
%Y A001055 counts factorizations.
%Y A046099 counts factorizations with no alternating permutations.
%Y A071321 gives the alternating sum of prime factors of n (reverse: A071322).
%Y A273013 counts ordered factorizations of n^2 with alternating product 1.
%Y A347460 counts possible alternating products of factorizations.
%Y Cf. A025047, A038548, A062312, A088218, A119620, A316523, A330972, A332269, A347445, A347447, A347451, A347454.
%K nonn
%O 1,4
%A _Gus Wiseman_, Sep 06 2021
%E Data section extended up to a(108) by _Antti Karttunen_, Oct 22 2023