[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347340
E.g.f.: exp( exp(exp(x) - 1) - exp(x) ).
1
1, 0, 1, 4, 17, 91, 587, 4327, 35604, 323316, 3210600, 34574453, 400893066, 4975247460, 65755573847, 921535225267, 13643496840808, 212688569520955, 3480978391442106, 59657975022473437, 1068151956803180295, 19937983367649562025, 387243759600707804811, 7812456801157894913964
OFFSET
0,4
COMMENTS
Exponential transform of A058692.
Stirling transform of A000296.
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * (Bell(k) - 1) * a(n-k).
a(n) = Sum_{k=0..n} Stirling2(n,k) * A000296(k).
a(n) = Sum_{k=0..n} binomial(n,k) * A000258(k) * A000587(n-k).
MAPLE
g:= proc(n) option remember; `if`(n=0, 1,
add(g(n-j)*binomial(n-1, j-1), j=2..n))
end:
b:= proc(n, m) option remember; `if`(n=0,
g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Aug 27 2021
# second Maple program:
b:= proc(n, t) option remember; `if`(n=0, 1, add(b(n-j, t)*
`if`(t=0, 1, b(j, 0)-1)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 02 2021
MATHEMATICA
nmax = 23; CoefficientList[Series[Exp[Exp[Exp[x] - 1] - Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (BellB[k] - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
PROG
(PARI) my(x='x+O('x^25)); Vec(serlaplace(exp(exp(exp(x)-1)-exp(x)))) \\ Michel Marcus, Aug 27 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 27 2021
STATUS
approved