OFFSET
5,2
FORMULA
a(n) = Stirling2(n,5) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,5) * k * a(k).
a(n) ~ -(n-1)! * 2^(1+n) * 5^n * cos(n*arctan((2*arctan(sqrt(10 - 2*sqrt(5))/(1 + sqrt(5) + 2^(7/5)/15^(1/5)))) / log(1 + 3^(1/5)*5^(7/10)/2^(2/5) + 15^(1/5)/2^(2/5) + 2^(6/5)*15^(2/5)))) / (100*arctan(sqrt(10 - 2*sqrt(5))/(1 + sqrt(5) + 2^(7/5)/15^(1/5)))^2 + (5*log(1 + 3^(1/5)*5^(7/10)/2^(2/5) + 15^(1/5)/2^(2/5) + 2^(6/5)*15^(2/5)))^2)^(n/2). - Vaclav Kotesovec, Aug 10 2021
MATHEMATICA
nmax = 24; CoefficientList[Series[Log[1 + (Exp[x] - 1)^5/5!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 5] &
a[n_] := a[n] = StirlingS2[n, 5] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 5] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 5, 24}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 09 2021
STATUS
approved