[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346808
Numbers that are the sum of ten squares in ten or more ways.
3
61, 64, 66, 67, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124
OFFSET
1,1
LINKS
EXAMPLE
64 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 7^2
= 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 6^2
= 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 5^2 + 5^2
= 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 4^2 + 5^2
= 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 5^2
= 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 5^2
= 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2 + 4^2
= 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 4^2 + 4^2
= 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2
= 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 4^2
= 1^2 + 1^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2
so 64 is a term.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**2 for x in range(1, 1000)]
for pos in cwr(power_terms, 10):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 10])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
Cf. A345558, A346803. Subsequence of A346807.
Sequence in context: A114085 A195378 A260561 * A345485 A295805 A295157
KEYWORD
nonn
AUTHOR
STATUS
approved