[go: up one dir, main page]

login
A346230
Number of n-step 9-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
2
1, 1, 10, 91, 766, 6130, 48628, 399403, 3459646, 31119382, 283230172, 2571653926, 23283756892, 211338730900, 1932349078216, 17832773405035, 165944764694782, 1552985405704558, 14576920303430476, 137021547292573186, 1289614077968369716, 12160967374482417964
OFFSET
0,3
LINKS
FORMULA
a(n) == 1 (mod 9).
MAPLE
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> `if`(n>min(l),
add(`if`(l[i]=0, 0, b(n-1, sort(subsop(i=l[i]-1, l)))),
i=1..k)+b(n-1, map(x-> x+1, l)), (k+1)^n))(nops(l)))
end:
a:= n-> b(n, [0$9]):
seq(a(n), n=0..27);
CROSSREFS
Column k=9 of A335570.
Sequence in context: A002739 A344389 A079928 * A231412 A002452 A096261
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Jul 11 2021
STATUS
approved