[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346122
n times the n-th digit of the decimal expansion of Pi.
0
3, 2, 12, 4, 25, 54, 14, 48, 45, 30, 55, 96, 117, 98, 135, 48, 34, 54, 152, 80, 126, 44, 138, 96, 75, 78, 216, 84, 58, 210, 279, 160, 0, 68, 280, 288, 148, 38, 351, 280, 41, 252, 387, 132, 405, 414, 141, 336, 245, 50, 0, 260, 424, 108, 0, 504, 399, 232, 531
OFFSET
1,1
EXAMPLE
The first digit of the decimal expansion of Pi is 3, so a(1) = 1*3 = 3.
The second digit of the decimal expansion of Pi is 1, so a(2) = 2*1 = 2.
The third digit of the decimal expansion of Pi is 4, so a(3) = 3*4 = 12.
MATHEMATICA
Module[{nn=120, pid}, pid=RealDigits[Pi, 10, nn][[1]]; Table[n pid[[n]], {n, nn}]]
PROG
(Python)
from sympy import S
def aupton(terms):
digits_of_pi = "0" + str(S.Pi.n(terms+1)).replace('.', '')
return [n*int(digits_of_pi[n]) for n in range(1, terms+1)]
print(aupton(59)) # Michael S. Branicky, Jul 08 2021
CROSSREFS
Cf. A000796, A014976 (zeros), A053745 (fixed points).
Sequence in context: A078563 A016560 A122407 * A232752 A195200 A098646
KEYWORD
base,nonn
AUTHOR
Harvey P. Dale, Jul 05 2021
STATUS
approved