OFFSET
0,5
COMMENTS
The alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. This is equal to the number of odd parts in the conjugate partition, so T(n,k) is the number of integer partitions of n with k odd parts in the conjugate partition, which is also the number of partitions of n with k odd parts.
Also the number of integer partitions of n with odd-indexed parts (odd bisection) summing to k, ceiling(n/2) <= k <= n. The even-indexed version is A346633. - Gus Wiseman, Nov 29 2021
EXAMPLE
Triangle begins:
1
1
1 1
2 1
2 2 1
4 2 1
3 5 2 1
7 5 2 1
5 9 5 2 1
12 10 5 2 1
7 17 10 5 2 1
19 19 10 5 2 1
11 28 20 10 5 2 1
30 33 20 10 5 2 1
15 47 35 20 10 5 2 1
45 57 36 20 10 5 2 1
22 73 62 36 20 10 5 2 1
67 92 64 36 20 10 5 2 1
30 114 102 65 36 20 10 5 2 1
97 147 107 65 36 20 10 5 2 1
Row n = 10 counts the following partitions (A = 10):
(55) (64) (73) (82) (91) (A)
(3322) (442) (433) (622) (811)
(4411) (541) (532) (721)
(222211) (3331) (631) (7111)
(331111) (4222) (5221) (61111)
(22111111) (4321) (6211)
(1111111111) (5311) (42211)
(22222) (52111)
(32221) (511111)
(33211) (4111111)
(43111)
(322111)
(421111)
(2221111)
(3211111)
(31111111)
(211111111)
The conjugate version is:
(A) (55) (3331) (331111) (31111111) (1111111111)
(64) (73) (5311) (511111) (211111111)
(82) (91) (7111) (3211111)
(442) (433) (33211) (4111111)
(622) (532) (43111) (22111111)
(4222) (541) (52111)
(22222) (631) (61111)
(721) (322111)
(811) (421111)
(3322) (2221111)
(4321)
(4411)
(5221)
(6211)
(32221)
(42211)
(222211)
MATHEMATICA
ats[y_]:=Sum[(-1)^(i-1)*y[[i]], {i, Length[y]}];
Table[Length[Select[IntegerPartitions[n], ats[#]==k&]], {n, 0, 15}, {k, Mod[n, 2], n, 2}]
CROSSREFS
This is A103919 with all zeros removed.
The reverse version is the right half of A344612.
The strict reverse version is the right half of A344739.
A344610 counts partitions of n by positive rev-alternating sum.
A344611 counts partitions of 2n with rev-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Jun 05 2021
STATUS
approved