[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333143
Triangle read by rows: T(n, k) = qStirling2(n, k, q) for q = 3, with 0 <= k <= n.
8
1, 1, 1, 1, 5, 1, 1, 21, 18, 1, 1, 85, 255, 58, 1, 1, 341, 3400, 2575, 179, 1, 1, 1365, 44541, 106400, 24234, 543, 1, 1, 5461, 580398, 4300541, 3038714, 221886, 1636, 1, 1, 21845, 7550635, 172602038, 371984935, 83805218, 2010034, 4916, 1
OFFSET
0,5
FORMULA
qStirling2(n, k, q) = qStirling2(n-1, k-1, q) + qBrackets(k+1, q)*qStirling2(n-1, k, q) with boundary values 0^k if n = 0 and n^0 if k = 0.
Note that also a second definition is used in the literature which has an additional factor q^k attached to the first term in the equation above. The two versions differ by a factor of q^binomial(k,2).
EXAMPLE
[0] 1
[1] 1, 1
[2] 1, 5, 1
[3] 1, 21, 18, 1
[4] 1, 85, 255, 58, 1
[5] 1, 341, 3400, 2575, 179, 1
[6] 1, 1365, 44541, 106400, 24234, 543, 1
[7] 1, 5461, 580398, 4300541, 3038714, 221886, 1636, 1
[8] 1, 21845, 7550635, 172602038, 371984935, 83805218, 2010034, 4916, 1
MAPLE
qStirling2 := proc(n, k, q) option remember; with(QDifferenceEquations):
if n = 0 then return 0^k fi; if k = 0 then return n^0 fi;
qStirling2(n-1, k-1, p) + QBrackets(k+1, p)*qStirling2(n-1, k, p);
subs(p = q, expand(%)) end:
seq(seq(qStirling2(n, k, 3), k=0..n), n=0..9);
MATHEMATICA
qStirling2[n_, k_, q_] /; 1 <= k <= n := (* q^(k-1) *) qStirling2[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}] qStirling2[n - 1, k, q];
qStirling2[n_, 0, _] := KroneckerDelta[n, 0];
qStirling2[0, k_, _] := KroneckerDelta[0, k];
qStirling2[_, _, _] = 0;
Table[qStirling2[n + 1, k + 1, 3], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 11 2020 *)
CROSSREFS
T(n, 1) = A002450(n), T(n, n-1) = A000340(n).
Cf. A139382 (q=2), A333142.
Sequence in context: A176242 A036969 A080249 * A157154 A022168 A359993
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 09 2020
STATUS
approved