[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332829
Number of compositions of n such that the difference between adjacent parts is at least two.
2
1, 1, 1, 1, 3, 4, 6, 9, 15, 23, 36, 55, 87, 136, 212, 329, 515, 802, 1251, 1949, 3043, 4745, 7401, 11535, 17994, 28063, 43766, 68243, 106433, 165981, 258854, 403670, 629530, 981750, 1531055, 2387660, 3723569, 5806905, 9055889, 14122638, 22024291, 34346886
OFFSET
0,5
LINKS
FORMULA
a(n) ~ c * d^n, where d = 1.55950091106966174000570854045613844480247532446123619115121795622156266..., c = 0.42021981384104890468461570042297109905705539874851026797544718780579866... - Vaclav Kotesovec, Feb 28 2020
EXAMPLE
a(4) = 3: 13, 31, 4.
a(5) = 4: 131, 14, 41, 5.
a(6) = 6: 141, 24, 42, 15, 51, 6.
a(7) = 9: 313, 142, 241, 151, 25, 52, 16, 61, 7.
a(8) = 15: 1313, 3131, 242, 314, 413, 152, 251, 35, 53, 161, 26, 62, 17, 71, 8.
a(9) = 23: 13131, 1314, 1413, 3141, 4131, 414, 252, 135, 153, 315, 351, 513, 531, 162, 261, 36, 63, 171, 27, 72, 18, 81, 9.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, add(`if`(abs
(i-j)<2, 0, b(n-j, `if`(n<2*j-1, -1, j))), j=1..n))
end:
a:= n-> b(n, -1):
seq(a(n), n=0..50);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[If[Abs[i - j] < 2, 0,
b[n - j, If[n < 2*j - 1, -1, j]]], {j, 1, n}]];
a[n_] := b[n, -1];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 13 2022, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A107340 A326655 A291866 * A173270 A301657 A241342
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 25 2020
STATUS
approved