[go: up one dir, main page]

login
A332334
Let a(1) = a(2) = 1, and for n > 2 let a(n) = p where p is the largest prime such that p# divides phi(n), where phi is Euler's totient function and # is the primorial.
0
1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 5, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 2, 5, 5, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 5, 3, 3, 2, 3, 2, 2, 3, 2, 3, 2
OFFSET
1,3
COMMENTS
Pollack and Pomerance show that the normal order of a(n) is log log n/log log log n. The maximal order is log n (for primorial primes A018239, by the prime number theorem) and the minimal order, for n > 2, is 2 (for products of Fermat primes A143512, apart from 1).
LINKS
Paul Pollack and Carl Pomerance, Phi, primorials, and Poisson, arXiv:2001.06727 [math.NT], 2020.
PROG
(PARI) a(n)=my(ph=eulerphi(n)); my(p=1); forprime(q=2, , if(ph%q, return(p), p=q))
CROSSREFS
Sequence in context: A338094 A165035 A236531 * A217403 A081309 A329377
KEYWORD
nonn
AUTHOR
STATUS
approved