OFFSET
1,1
COMMENTS
The Maclaurin polynomial p(2n,x) of cos x is 1 - x^2/2! + x^4/4! + ... + (-1)^n x^(2n)/(2n)!.
Let z(n) be the next-to-least positive zero of p(2n,x) if there is such a zero. The limit of z(n) is 3 Pi/2 = 4.7123889..., as in A197723.
EXAMPLE
Next-to-least positive zero = 3.0763780026417030969660258639367224
MATHEMATICA
z = 150; p[n_, x_] := Normal[Series[Cos[x], {x, 0, n}]]
t = x /. NSolve[p[4, x] == 0, x, z][[4]]
u = RealDigits[t][[1]]
Plot[Evaluate[p[4, x]], {x, -1, 4}]
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Feb 11 2020
STATUS
approved