[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332179
a(n) = 7*(10^(2n+1)-1)/9 + 2*10^n.
9
9, 797, 77977, 7779777, 777797777, 77777977777, 7777779777777, 777777797777777, 77777777977777777, 7777777779777777777, 777777777797777777777, 77777777777977777777777, 7777777777779777777777777, 777777777777797777777777777, 77777777777777977777777777777, 7777777777777779777777777777777
OFFSET
0,1
COMMENTS
See A183183 = {1, 2, 8, 19, 20, 212, 280, ...} for the indices of primes.
FORMULA
a(n) = 7*A138148(n) + 9*10^n.
G.f.: (9 - 202*x - 500*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332179 := n -> 7*(10^(n*2+1)-1)/9 + 2*10^n;
MATHEMATICA
Array[7 (10^(2 # + 1) - 1)/9 + 2*10^# &, 15, 0]
PROG
(PARI) apply( {A332179(n)=10^(n*2+1)\9*7+2*10^n}, [0..15])
(Python) def A332179(n): return 10**(n*2+1)//9*7+2*10^n
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits only).
Cf. (A077796-1)/2 = A183183: indices of primes.
Cf. A002275 (repunits R_n = [10^n/9]), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332178 (variants with different middle digit 1, ..., 8).
Sequence in context: A303143 A137065 A272853 * A196981 A197166 A015025
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 08 2020
STATUS
approved