[go: up one dir, main page]

login
A332055
Tower of 8's modulo n.
2
0, 0, 1, 0, 1, 4, 1, 0, 1, 6, 3, 4, 1, 8, 1, 0, 1, 10, 11, 16, 1, 14, 6, 16, 6, 14, 19, 8, 20, 16, 8, 0, 25, 18, 1, 28, 26, 30, 1, 16, 10, 22, 35, 36, 1, 6, 25, 16, 8, 6, 1, 40, 28, 46, 36, 8, 49, 20, 4, 16, 34, 8, 1, 0, 1, 58, 24, 52, 52, 36, 8, 64, 8, 26, 31
OFFSET
1,6
COMMENTS
a(n) = (8^(8^(8^(8^ ... )))) mod n, provided sufficient 8's are in the tower such that adding more doesn't affect the value of a(n).
FORMULA
a(n) = 8^(A000010(n) + a(A000010(n))) mod n.
a(n) = (8^^k) mod n, if n < A246496(k), where ^^ is Knuth's double-arrow notation.
PROG
(PARI) a(n) = {my(b, c=0, d=n, k=1, x=1); while(k==1, z=x; y=1; b=1; while(z>0, while(y<z, d=eulerphi(d); y++); b=8^b-floor((8^b-1)/d)*d; z=z-1; y=1; d=n); if(c==b, k=0); c=b; x++); b%n; }
KEYWORD
nonn
AUTHOR
Jinyuan Wang, Mar 04 2020
STATUS
approved