[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of lone-child-avoiding locally disjoint unlabeled rooted trees with n vertices.
12

%I #15 Feb 01 2020 07:08:24

%S 1,0,1,1,2,3,6,9,16,26,45,72,124,201,341,561,947,1571,2651,4434,7496,

%T 12631,21423,36332,61910,105641,180924,310548,534713,923047

%N Number of lone-child-avoiding locally disjoint unlabeled rooted trees with n vertices.

%C First differs from A320268 at a(11) = 45, A320268(11) = 44.

%C A rooted tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other unequal child of the same vertex. Lone-child-avoiding means there are no unary branchings.

%H David Callan, <a href="http://arxiv.org/abs/1406.7784">A sign-reversing involution to count labeled lone-child-avoiding trees</a>, arXiv:1406.7784 [math.CO], (30-June-2014).

%H Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a>

%e The a(1) = 1 through a(9) = 16 trees (empty column indicated by dot):

%e o . (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo) (oooooooo)

%e (o(oo)) (o(ooo)) (o(oooo)) (o(ooooo)) (o(oooooo))

%e (oo(oo)) (oo(ooo)) (oo(oooo)) (oo(ooooo))

%e (ooo(oo)) (ooo(ooo)) (ooo(oooo))

%e ((oo)(oo)) (oooo(oo)) (oooo(ooo))

%e (o(o(oo))) (o(o(ooo))) (ooooo(oo))

%e (o(oo)(oo)) ((ooo)(ooo))

%e (o(oo(oo))) (o(o(oooo)))

%e (oo(o(oo))) (o(oo(ooo)))

%e (o(ooo(oo)))

%e (oo(o(ooo)))

%e (oo(oo)(oo))

%e (oo(oo(oo)))

%e (ooo(o(oo)))

%e (o((oo)(oo)))

%e (o(o(o(oo))))

%t disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];

%t strut[n_]:=If[n==1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@Rest[IntegerPartitions[n-1]],disjointQ]];

%t Table[Length[strut[n]],{n,10}]

%Y The enriched version is A316696.

%Y The Matula-Goebel numbers of these trees are A331871.

%Y The non-locally disjoint version is A001678.

%Y These trees counted by number of leaves are A316697.

%Y The semi-lone-child-avoiding version is A331872.

%Y Cf. A000081, A000669, A005804, A060356, A141268, A300660, A316471, A316473, A316694, A316495, A319312, A330465, A331679, A331681, A331683.

%K nonn,more

%O 1,5

%A _Gus Wiseman_, Jan 25 2020