[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331515
Expansion of 1/(1 - 8*x + 4*x^2)^(3/2).
3
1, 12, 114, 1000, 8430, 69384, 561988, 4499856, 35719830, 281634760, 2208564732, 17242680624, 134118558028, 1039939550160, 8041848166920, 62042202765856, 477670318108902, 3670988584476744, 28166853684793420, 215807899372086000, 1651323989374972836
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=1..n+1} 2^(n-k) * k * binomial(n+1,k) * binomial(n+1+k,k).
n * a(n) = 4 * (2*n+1) * a(n-1) - 4 * (n+1) * a(n-2) for n>1.
a(n) = ((n+2)/2) * Sum_{k=0..n} 3^k * binomial(n+1,k) * binomial(n+1,k+1).
a(n) ~ 2^(n - 1/2) * (2 + sqrt(3))^(n + 3/2) * sqrt(n) / (3^(3/4) * sqrt(Pi)). - Vaclav Kotesovec, Jan 26 2020
MATHEMATICA
a[n_] := Sum[2^(n - k) * k * Binomial[n + 1, k] * Binomial[n + 1 + k, k], {k, 1, n + 1}]; Array[a, 21, 0] (* Amiram Eldar, Jan 20 2020 *)
PROG
(PARI) N=20; x='x+O('x^N); Vec(1/(1-8*x+4*x^2)^(3/2))
(PARI) {a(n) = sum(k=1, n+1, 2^(n-k)*k*binomial(n+1, k)*binomial(n+1+k, k))}
(Magma) R<x>:=PowerSeriesRing(Rationals(), 21); Coefficients(R!( 1/(1 - 8*x + 4*x^2)^(3/2))); // Marius A. Burtea, Jan 20 2020
(Magma) [&+[2^(n-k)*k*Binomial(n+1, k)*Binomial(n+k+1, k):k in [1..n+1]]:n in [0..21]]; // Marius A. Burtea, Jan 20 2020
CROSSREFS
Column 4 of A331514.
Cf. A069835.
Sequence in context: A257287 A125400 A378504 * A154237 A006635 A062386
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 19 2020
STATUS
approved