Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jan 05 2020 08:11:24
%S 0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,3,0,2,0,2,0,0,0,5,0,0,1,2,0,3,0,5,0,0,
%T 0,7,0,0,0,5,0,3,0,2,2,0,0,10,0,2,0,2,0,5,0,5,0,0,0,9,0,0,2,9,0,3,0,2,
%U 0,3,0,14,0,0,2,2,0,3,0,10,3,0,0,9,0,0
%N Number of nontrivial factorizations of n into factors > 1.
%C The trivial factorizations of a number are (1) the case with only one factor, and (2) the factorization into prime numbers.
%F For prime n, a(n) = 0; for nonprime n, a(n) = A001055(n) - 2.
%e The a(n) nontrivial factorizations of n = 8, 12, 16, 24, 36, 48, 60, 72:
%e (2*4) (2*6) (2*8) (3*8) (4*9) (6*8) (2*30) (8*9)
%e (3*4) (4*4) (4*6) (6*6) (2*24) (3*20) (2*36)
%e (2*2*4) (2*12) (2*18) (3*16) (4*15) (3*24)
%e (2*2*6) (3*12) (4*12) (5*12) (4*18)
%e (2*3*4) (2*2*9) (2*3*8) (6*10) (6*12)
%e (2*3*6) (2*4*6) (2*5*6) (2*4*9)
%e (3*3*4) (3*4*4) (3*4*5) (2*6*6)
%e (2*2*12) (2*2*15) (3*3*8)
%e (2*2*2*6) (2*3*10) (3*4*6)
%e (2*2*3*4) (2*2*18)
%e (2*3*12)
%e (2*2*2*9)
%e (2*2*3*6)
%e (2*3*3*4)
%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t Table[Length[DeleteCases[Rest[facs[n]],{_}]],{n,100}]
%Y Positions of nonzero terms are A033942.
%Y Positions of 1's are A030078.
%Y Positions of 2's are A054753.
%Y Nontrivial integer partitions are A007042.
%Y Nontrivial set partitions are A008827.
%Y Nontrivial divisors are A070824.
%Y Cf. A001055, A003238, A005121, A317145, A317176, A318812, A330665, A330935.
%K nonn
%O 1,12
%A _Gus Wiseman_, Jan 04 2020