Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jan 20 2024 16:07:16
%S 1,1,2,4,12,40,180,936,5820,41288,331748,2968688,29307780,316273976,
%T 3704154568,46788812168,634037127612,9174782661984,141197140912208,
%U 2302765704401360,39671953757409256,719926077632193848,13726066030661998220,274313334040504957368
%N Number of balanced reduced multisystems whose atoms constitute an integer partition of n.
%C A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
%H Andrew Howroyd, <a href="/A330679/b330679.txt">Table of n, a(n) for n = 0..200</a>
%F a(n > 1) = 2 * A318813(n).
%e The a(0) = 1 through a(4) = 12 multisystems:
%e {} {1} {2} {3} {4}
%e {1,1} {1,2} {1,3}
%e {1,1,1} {2,2}
%e {{1},{1,1}} {1,1,2}
%e {1,1,1,1}
%e {{1},{1,2}}
%e {{2},{1,1}}
%e {{1},{1,1,1}}
%e {{1,1},{1,1}}
%e {{1},{1},{1,1}}
%e {{{1}},{{1},{1,1}}}
%e {{{1,1}},{{1},{1}}}
%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m];
%t Table[Sum[Length[totm[m]],{m,IntegerPartitions[n]}],{n,0,5}]
%Y The case where the atoms are all 1's is A318813 = a(n)/2.
%Y The version where the atoms constitute a strongly normal multiset is A330475.
%Y The version where the atoms cover an initial interval is A330655.
%Y The maximum-depth version is A330726.
%Y Cf. A000041, A000111, A000669, A001970, A002846, A005121, A141268, A196545, A213427, A318812, A320160, A330474.
%K nonn
%O 0,3
%A _Gus Wiseman_, Dec 31 2019
%E a(12) onwards from _Andrew Howroyd_, Jan 20 2024