[go: up one dir, main page]

login
A330098
Number of distinct multisets of multisets that can be obtained by permuting the vertices of the multiset of multisets with MM-number n.
34
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2
OFFSET
1,35
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
a(n) is a divisor of A303975(n)!.
EXAMPLE
The vertex-permutations of {{1,2},{2,3,3}} are:
{{1,2},{1,3,3}}
{{1,2},{2,3,3}}
{{1,3},{1,2,2}}
{{1,3},{2,2,3}}
{{2,3},{1,1,2}}
{{2,3},{1,1,3}}
so a(4927) = 6.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]], i}, {i, Length[p]}])], {p, Permutations[Union@@m]}]];
Table[Length[graprms[primeMS/@primeMS[n]]], {n, 100}]
CROSSREFS
Positions of 1's are A330232.
Positions of first appearances are A330230 and A330233.
The BII-number version is A330231.
Sequence in context: A334377 A063053 A063050 * A189024 A304720 A057557
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 09 2019
STATUS
approved