[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339271
a(n) is the smallest number k that can be partitioned into a set of n distinct positive integers {e(1), e(2), ..., e(n)} where Sum_{i=1..n} e(i)*(e(i)-1) = k*(k-1)/2.
1
4, 13, 20, 53, 56, 92, 109, 120, 160, 200, 221, 268, 325, 389, 420, 497, 561, 616, 684, 725, 813, 901, 969, 1064, 1132, 1197, 1329, 1421, 1516, 1581, 1740, 1849, 1904, 2060, 2189, 2288, 2444, 2560, 2696, 2849, 2985, 3128, 3261, 3404, 3564, 3744, 3904, 4044, 4204, 4381, 4585, 4725
OFFSET
2,1
COMMENTS
These numbers solve the problem of what is the required minimum number of socks of n colors such that a random drawing of two socks has a 50% chance of matching. In this version the number of socks of each color is distinct, but there may be a color with only one sock.
EXAMPLE
For n = 3, {1, 3, 9} is the set with the smallest sum that has this property. With 1 socks of one color, 3 socks of another color, and 9 socks of a third color, there is exactly a 50% chance that a random draw of two socks will produce a matching pair. (1*0 + 3*2 + 9*8) = (13*12) / 2.
n = 2, sum = 4, set = {1, 3}
n = 3, sum = 13, set = {1, 3, 9}
n = 4, sum = 20, set = {1, 2, 3, 14}
n = 5, sum = 53, set = {1, 2, 3, 11, 36}
n = 6, sum = 56, set = {1, 2, 3, 5, 6, 39}
PROG
(PARI) \\ See 'Faster PARI Program' link in A246750 for PartsByWeight.
a(n)={local(FC=Map()); for(k=1, oo, if(PartsByWeight(n, k-n*(n-1)/2, k*(k-1)/2, (i, v)->(i+v-1)*(i+v-2)), return(k))); oo} \\ Andrew Howroyd, Nov 30 2020
CROSSREFS
Cf. other variations of the problem: A246750, A332105, A339272.
Sequence in context: A299677 A300309 A228138 * A081024 A339216 A155095
KEYWORD
nonn
AUTHOR
Dean D. Ballard, Nov 29 2020
EXTENSIONS
a(16)-a(24) from Michael S. Branicky, Nov 29 2020
a(25)-a(30) from Andrew Howroyd, Nov 30 2020
a(31)-a(53) from Michael S. Branicky, Dec 03 2020
STATUS
approved