[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338917
a(n) = sum_of_digits(a(n-1)^a(n-2)) where a(1)=1 and a(2)=2.
1
1, 2, 2, 4, 7, 7, 25, 34, 151, 331, 1690, 3265, 26449, 64528, 574513, 1671208, 16090657, 54199564, 559922497, 2133503863, 23506132363
OFFSET
1,2
FORMULA
a(n) == 7 (mod 9) for n >= 5. - Hugo Pfoertner, Nov 15 2020
EXAMPLE
for n=6, a(6) = sum_of_digits(7^7) = sum_of_digits(823543) = 25
MATHEMATICA
a[1]:=1; a[2]:=2; a[n_]:=Total[IntegerDigits[a[n-1]^a[n-2]]]; Array[a, 19] (* Stefano Spezia, Nov 15 2020 *)
PROG
(SageMath)
a, b=1, 2
L=[a, b]
for n in [1..17]:
c=b^a
c=sum(c.digits())
L.append(c)
a, b=b, c
print(L)
(PARI) a338917(nmax)={my(x=vector(nmax)); x[1]=1; x[2]=2; for(k=3, nmax, x[k]=sumdigits(x[k-1]^x[k-2])); x};
a338917(18) \\ Hugo Pfoertner, Nov 15 2020
CROSSREFS
Cf. A007953.
Sequence in context: A244011 A065968 A105669 * A256963 A355306 A019657
KEYWORD
nonn,base,more
AUTHOR
Sean Lestrange, Nov 15 2020
EXTENSIONS
a(20) from Hugo Pfoertner, Nov 15 2020
a(21) from Chai Wah Wu, Nov 19 2020
STATUS
approved