[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338633
G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 2^3*x/(A(x) - 3^3*x/(A(x) - 4^3*x/(A(x) - 5^3*x/(A(x) - 6^3*x/(A(x) - ...)))))), a continued fraction relation.
3
1, 1, 7, 250, 21867, 3725702, 1096355494, 513875333940, 361121449989171, 362961084011245198, 502496711191618404882, 929337000359116522329132, 2238572532534241145084855934, 6875030222633195280825967544508, 26436454884630260855874989243890732
OFFSET
0,3
COMMENTS
Compare to the continued fraction relation for the g.f. of A158119 and A338634.
LINKS
FORMULA
For n > 0, a(n) is odd iff n is a power of 2 (conjecture).
From Vaclav Kotesovec, Nov 12 2020: (Start)
a(n) ~ sqrt(3/(2*Pi)) * (6*Gamma(2/3)/Gamma(1/3)^2)^(3*n + 3/2) * (n!)^3 / sqrt(n).
a(n) ~ 2^(6*n + 4) * 3^(3*n/2 + 5/4) * Pi^(3*n + 5/2) * n^(3*n + 1) / Gamma(1/3)^(9*(n + 1/2)) / exp(3*n). (End)
EXAMPLE
G.f.: A(x) = 1 + x + 7*x^2 + 250*x^3 + 21867*x^4 + 3725702*x^5 + 1096355494*x^6 + 513875333940*x^7 + 361121449989171*x^8 + 362961084011245198*x^9 + ...
where
1 = A(x) - x/(A(x) - 2^3*x/(A(x) - 3^3*x/(A(x) - 4^3*x/(A(x) - 5^3*x/(A(x) - 6^3*x/(A(x) - 7^3*x/(A(x) - 8^3*x/(A(x) - 9^3*x/(A(x) - ...))))))))), a continued fraction relation.
PROG
(PARI) {a(n) = my(A=[1], CF=1); for(i=1, n, A=concat(A, 0); for(i=1, #A, CF = Ser(A) - (#A-i+1)^3*x/CF ); A[#A] = -polcoeff(CF, #A-1) ); A[n+1] }
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 04 2020
STATUS
approved