[go: up one dir, main page]

login
A338416
Numbers k such that both 3*k-2 and 2*k-3 are in A338410.
1
11, 71, 1091, 2927, 7127, 12347, 23087, 41651, 56951, 74747, 119771, 234947, 298451, 405287, 458207, 649907, 656291, 708371, 936587, 991187, 1015127, 1056971, 1058807, 1128527, 1129787, 1169687, 1393967, 1413371, 1417067, 1442351, 1502747, 1707551, 1752227, 1785071, 1928807, 1957871, 1998947
OFFSET
1,1
COMMENTS
Primes p such that 3*p-2, 2*p-3, (3*p+1)/2 and (2*p-1)/3 are all prime.
All terms == 11 (mod 12).
LINKS
EXAMPLE
a(3) = 1091 is in the sequence because 3*1091-2=3271 and 2*1091-3=2179 are in A338410.
MAPLE
filter:= proc(p) isprime(p) and isprime(3*p-2) and isprime(2*p-3) and isprime((3*p+1)/2) and isprime((2*p-1)/3) end proc:
select(filter, [seq(i, i=11 .. 10^7, 12)]);
MATHEMATICA
Select[Prime[Range[150000]], AllTrue[{3#-2, 2#-3, (2#-1)/3, (3#+1)/2}, PrimeQ]&] (* Harvey P. Dale, May 20 2023 *)
CROSSREFS
Cf. A338410.
Sequence in context: A139185 A103998 A160587 * A034196 A236173 A092044
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Oct 25 2020
STATUS
approved