[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338042
Draw n rays from each of two distinct points in the plane; a(n) is the number of vertices thus created. See Comments for details.
3
2, 2, 4, 2, 8, 4, 14, 8, 22, 14, 32, 22, 44, 32, 58, 44, 74, 58, 92, 74, 112, 92, 134, 112, 158, 134, 184, 158, 212, 184, 242, 212, 274, 242, 308, 274, 344, 308, 382, 344, 422, 382, 464, 422, 508, 464, 554, 508, 602, 554, 652, 602, 704, 652, 758, 704, 814, 758
OFFSET
1,1
COMMENTS
The rays are evenly spaced around each point. The first ray of one point goes opposite to the direction to the other point. Should a ray hit the other point it terminates there, that is, it is converted to a line segment.
See A338041 for illustrations.
FORMULA
a(n) = (n^2 + 7)/4, n odd; (n^2 - 6*n + 16)/4, n even (conjectured).
Conjectured by Stefano Spezia, Oct 08 2020 after Lars Blomberg: (Start)
G.f.: 2*x*(1 - x^2 - x^3 + 2*x^4)/((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 5. (End)
Hugo Pfoertner, Oct 08 2020: Apparently a(n)=2*(A008795(n-3)+1).
EXAMPLE
For n=1: <-----x x-----> so a(1)=2.
For n=2: <-----x<--->x-----> so a(2)=2.
PROG
(PARI) a(n)=if(n%2==1, (n^2 + 7)/4, (n^2 - 6*n + 16)/4)
vector(200, n, a(n))
CROSSREFS
Cf. A338041 (regions), A338043 (edges), A008795.
Sequence in context: A297112 A259192 A307313 * A131999 A113416 A303140
KEYWORD
nonn
AUTHOR
Lars Blomberg, Oct 08 2020
STATUS
approved