[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338038
a(n) is the sum of the primes and exponents in the prime factorization of n, but ignoring 1-exponents.
6
0, 2, 3, 4, 5, 5, 7, 5, 5, 7, 11, 7, 13, 9, 8, 6, 17, 7, 19, 9, 10, 13, 23, 8, 7, 15, 6, 11, 29, 10, 31, 7, 14, 19, 12, 9, 37, 21, 16, 10, 41, 12, 43, 15, 10, 25, 47, 9, 9, 9, 20, 17, 53, 8, 16, 12, 22, 31, 59, 12, 61, 33, 12, 8, 18, 16, 67, 21, 26, 14, 71, 10
OFFSET
1,2
COMMENTS
First differs from A106492 for n=64.
LINKS
Chris Bispels, Muhammet Boran, Steven J. Miller, Eliel Sosis, and Daniel Tsai, v-Palindromes: An Analogy to the Palindromes, arXiv:2405.05267 [math.HO], 2024.
Daniel Tsai, A recurring pattern in natural numbers of a certain property, arXiv:2010.03151 [math.NT], 2020.
Daniel Tsai, A recurring pattern in natural numbers of a certain property, Integers (2021) Vol. 21, Article #A32.
FORMULA
a(n) = A008474(n) for powerful numbers (A001694).
EXAMPLE
For n = 18 = 2*3^2, a(18) = 2 + (3+2) = 7.
MAPLE
f:= proc(n) local t;
add(t[1]+t[2], t=subs(1=0, ifactors(n)[2]));
end proc:
map(f, [$1..100]); # Robert Israel, Oct 13 2020
MATHEMATICA
a[1] = 0; a[n_] := Plus @@ First /@ (f = FactorInteger[n]) + Plus @@ Select[Last /@ f, # > 1 &]; Array[a, 100] (* Amiram Eldar, Oct 08 2020 *)
PROG
(PARI) a(n) = my(f=factor(n)); vecsum(f[, 1]) + sum(k=1, #f~, if (f[k, 2]!=1, f[k, 2]));
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Oct 08 2020
STATUS
approved