[go: up one dir, main page]

login
A337962
Number of achiral colorings of the 12 pentagonal faces of a regular dodecahedron or the 12 vertices of a regular icosahedron using n or fewer colors.
7
1, 68, 1659, 16464, 97935, 420708, 1443197, 4198720, 10770597, 25016740, 53619335, 107545296, 204013251, 369072900, 640912665, 1074021632, 1744341865, 2755557252, 4246675123, 6401066960, 9457144599, 13720858404
OFFSET
1,2
COMMENTS
An achiral coloring is identical to its reflection. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual.
There are 60 elements in the automorphism group of the regular dodecahedron/icosahedron that are not in the rotation group. They divide into five conjugacy classes. The first formula is obtained by averaging the dodecahedron face (icosahedron vertex) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Odd Cycle Indices
Inversion 1 x_2^6
Edge rotation* 15 x_1^4x_2^4 Asterisk indicates that the
Vertex rotation* 20 x_6^2 operation is followed by an
Small face rotation* 12 x_2^1x_10^1 inversion.
Large face rotation* 12 x_2^1x_10^1
FORMULA
a(n) = n^2 * (15*n^6 + n^4 + 44)/60.
a(n) = 1*C(n,1) + 66*C(n,2) + 1458*C(n,3) + 10232*C(n,4) + 31530*C(n,5) + 47892*C(n,6) + 35280*C(n,7) + 10080*C(n,8), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n) = 2*A252705(n) - A000545(n) = A000545(n) - 2*A337961(n) = A252705(n) - A337961(n).
From Stefano Spezia, Oct 04 2020: (Start)
G.f.: x*(1+59*x+1083*x^2+3897*x^3+3087*x^4+1083*x^5+59*x^6+x^7)/(1-x)^9.
a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-8) for n > 8.
(End)
MATHEMATICA
Table[(15n^8+n^6+44n^2)/60, {n, 30}]
CROSSREFS
Cf. A000545 (oriented), A252705 (unoriented), A337961 (chiral).
Other elements: A337960 (dodecahedron vertices, icosahedron faces), A337953 (edges).
Other polyhedra: A006003 (tetrahedron), A337898 (cube faces, octahedron vertices), A337897 (octahedron faces, cube vertices).
Sequence in context: A245875 A329444 A230687 * A231106 A228332 A220722
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Oct 03 2020
STATUS
approved