[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337362
Number of pairs of divisors of n, (d1,d2), with d1 <= d2 such that d1 and d2 are nonconsecutive integers.
2
1, 2, 3, 5, 3, 8, 3, 9, 6, 9, 3, 18, 3, 9, 10, 14, 3, 19, 3, 19, 10, 9, 3, 33, 6, 9, 10, 20, 3, 33, 3, 20, 10, 9, 10, 42, 3, 9, 10, 34, 3, 33, 3, 20, 21, 9, 3, 52, 6, 20, 10, 20, 3, 34, 10, 34, 10, 9, 3, 73, 3, 9, 21, 27, 10, 34, 3, 20, 10, 35, 3, 74, 3, 9, 21, 20, 10, 34, 3, 53, 15
OFFSET
1,2
COMMENTS
Number of distinct rectangles that can be made using the divisors of n as side lengths and whose length is never one more than its width.
LINKS
FORMULA
a(n) = Sum_{d1|n, d2|n, d1<=d2} (1 - [d1 + 1 = d2]), where [] is the Iverson bracket.
a(n) = A337363(n) + A000005(n).
a(n) = A184389(n) - A129308(n). - Ridouane Oudra, Apr 15 2023
EXAMPLE
a(6) = 8; The divisors of 6 are {1,2,3,6}. There are 8 divisor pairs, (d1,d2), with d1 <= d2 that do not contain consecutive integers. They are (1,1), (1,3), (1,6), (2,2), (2,6), (3,3), (3,6) and (6,6). So a(6) = 8.
MATHEMATICA
Table[Sum[Sum[(1 - KroneckerDelta[i + 1, k]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 100}]
PROG
(PARI) a(n) = sumdiv(n, d1, sumdiv(n, d2, (d1<=d2) && (d1 + 1 != d2))); \\ Michel Marcus, Aug 25 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 24 2020
STATUS
approved