[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335922
Total number of internal nodes in all binary search trees of height n.
5
0, 1, 7, 97, 6031, 8760337, 8245932762607, 3508518207942911995940881, 311594265746788494170059418351454897488270152687
OFFSET
0,3
COMMENTS
Empty external nodes are counted in determining the height of a search tree.
FORMULA
a(n) = Sum_{k=n..2^n-1} k * A335919(k,n) = Sum_{k=n..2^n-1} k * A335920(k,n).
EXAMPLE
a(2) = 7 = 2 + 3 + 2:
.
2 2 1
/ \ / \ / \
1 o 1 3 o 2
/ \ ( ) ( ) / \
o o o o o o o o
.
MAPLE
b:= proc(n, h) option remember; `if`(n=0, 1, `if`(n<2^h,
add(b(j-1, h-1)*b(n-j, h-1), j=1..n), 0))
end:
T:= (n, k)-> b(n, k)-`if`(k>0, b(n, k-1), 0):
a:= k-> add(T(n, k)*n, n=k..2^k-1):
seq(a(n), n=0..10);
MATHEMATICA
b[n_, h_] := b[n, h] = If[n == 0, 1, If[n < 2^h,
Sum[b[j - 1, h - 1]*b[n - j, h - 1], {j, 1, n}], 0]];
T[n_, k_] := b[n, k] - If[k > 0, b[n, k - 1], 0];
a[k_] := Sum[T[n, k]*n, {n, k, 2^k - 1}];
Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Apr 26 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 29 2020
STATUS
approved