[go: up one dir, main page]

login
A335851
Numbers that are powerful in Gaussian integers.
6
1, 2, 4, 8, 9, 16, 18, 25, 27, 32, 36, 49, 50, 54, 64, 72, 81, 98, 100, 108, 121, 125, 128, 144, 162, 169, 196, 200, 216, 225, 242, 243, 250, 256, 288, 289, 324, 338, 343, 361, 392, 400, 432, 441, 450, 484, 486, 500, 512, 529, 576, 578, 625, 648, 675, 676, 686
OFFSET
1,2
COMMENTS
Numbers all of whose prime factors in Gaussian integers have multiplicity larger than 1.
The even powerful numbers divided by 4. - Amiram Eldar, May 28 2023
LINKS
Eric Weisstein's World of Mathematics, Gaussian Integer.
Wikipedia, Gaussian integer.
FORMULA
Sum_{n>=1} 1/a(n) = (4/3) * Sum_{n>=1} 1/A001694(n) = 4*zeta(2)*zeta(3)/(3*zeta(6)) = (4/3) * A082695 = 2.591461...
EXAMPLE
2 is a term since 2 = -i * (1 + i)^2 in the ring of Gaussian integers. -i is a unit, and the multiplicity of its only Gaussian prime factor, 1 + i, is 2.
MATHEMATICA
gaussPowerQ[n_] := AllTrue[FactorInteger[n, GaussianIntegers -> True], Abs[First[#]] == 1 || Last[#] > 1 &]; Select[Range[1000], gaussPowerQ]
CROSSREFS
Disjoint union of A001694 and 2 * A062739.
Cf. A082695.
Sequence in context: A048715 A336232 A242662 * A028982 A320137 A324525
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jun 26 2020
STATUS
approved