[go: up one dir, main page]

login
A335031
Complement of A334919.
1
1, 2, 3, 4, 6, 7, 10, 11, 12, 14, 15, 19, 20, 22, 24, 26, 27, 31, 32, 34, 35, 36, 39, 42, 46, 47, 50, 52, 54, 55, 59, 60, 64, 66, 67, 70, 71, 74, 75, 76, 80, 87, 90, 91, 92, 94, 99, 102, 104, 110, 111, 112, 115, 116, 119, 122, 124, 126, 127, 131, 132, 136
OFFSET
1,2
COMMENTS
For each term m belonging to this list, 3*m+1 or (3*m+1)/2 is a prime.
EXAMPLE
1, 2, 3, 4, are terms because for i,j >= 1, number 3*i*j+i+j >= 5, and for i,j >= 2, number 3*i*j-i-j >= 8.
PROG
(Magma) [m:m in [1..140]|not exists(a){i:i in [1..m-1]|IsIntegral((m-i)/(1+3*i))} and not exists(b){j:j in [2..m-1]|IsIntegral((m+j)/(-1+3*j)) and (m+j)/(-1+3*j) ge 2}]; // Marius A. Burtea, Jun 04 2020
CROSSREFS
Cf. A334919.
Sequence in context: A375928 A287531 A047518 * A179834 A352335 A361798
KEYWORD
nonn
AUTHOR
Davide Rotondo, May 20 2020
STATUS
approved