[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334796
a(n) = (A070939(A334769(n)) - A334770(n))/3.
5
2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 4, 4, 4, 4, 2, 3, 3, 4, 4, 3, 3, 4, 4, 3, 5, 5, 5, 5, 3, 2, 4, 4, 4, 4, 2, 3, 5, 5, 5, 5, 5, 3, 5, 2, 5, 4, 5, 4, 4, 5, 4, 5, 2, 5, 3, 5, 6, 6, 6, 6, 3, 4, 5, 5, 4, 3, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 3, 4, 5
OFFSET
1,1
COMMENTS
An XOR-triangle T(m) is an inverted 0-1 triangle formed by choosing a top row the binary rendition of n and having each entry in subsequent rows be the XOR of the two values above it, i.e., A038554(m) applied recursively until we reach a single bit.
A334556 is the sequence of rotationally symmetrical T(m).
A central zero-triangle (CZT) is a field of contiguous 0-bits, listed in A334769, a subset of A334556. CZTs have side length k = A334770(n), surrounded on all sides by a layer of 1 bits, and generally j > 1 bits of any parity.
This sequence describes the "frame width" j.
Smallest n with a given value of j appears in A334836. - Michael De Vlieger, May 20 2020
LINKS
Michael De Vlieger, Diagram montage showing XOR-triangles for terms in certain linear recurrences and their bit-reversals, illustrating relations in their appearance, most significantly, constant frame width.
Michael De Vlieger, Diagram montage showing the first dozen XOR-triangles exhibiting frame widths of 2, 3, 4, ..., 12 by row.
EXAMPLE
a(4) pertains to T(599), with A334770(4) = 4.
(1 + A070939(599) - 4)/3 = (1 + 9 - 4)/3 = 6/3 = 2, thus a(4) = 2.
(Diagram, replacing 0 with “.”):
1 . . 1 . 1 . 1 1 1
1 . 1 1 1 1 1 . .
1 1 . . . . 1 .
. 1 . . . 1 1
1 1 . . 1 .
. 1 . 1 1
1 1 1 .
. . 1
. 1
1
a(11) pertains to T(2359), with A334770(11) = 3.
(1 + A070939(2359) - 4)/3 = (1 + 11 - 3)/3 = 9/3 = 3, thus a(11) = 3.
(Diagram):
1 . . 1 . . 1 1 . 1 1 1
1 . 1 1 . 1 . 1 1 . .
1 1 . 1 1 1 1 . 1 .
. 1 1 . . . 1 1 1
1 . 1 . . 1 . .
1 1 1 . 1 1 .
. . 1 1 . 1
. 1 . 1 1
1 1 1 .
. . 1
. 1
1
From Michael De Vlieger, May 14 2020: (Start)
Linear recurrences that produce XOR-triangles with frame length j (table may not be exhaustive):
j LR Lower Upper
-----------------------------------------------------
2 (5, -4) {39, 151} {57, 223}
3 (17, -16) {543, 8607} {993, 15969}
{1379, 22115} {1589, 25397}
{1483, 23755} {1693, 27037}
{2359, 37687} {3785, 60617}
4 (17, -16) {22243, 356067} {25525, 408501}
{39047, 624775} {57625, 921881}
{40679, 650983} {59257, 948089}
{171475, 2743763} {208613, 3337957}
{356067, 5697251} {408501, 6536117}
... (End)
MATHEMATICA
Block[{f, s = Rest[Import["https://oeis.org/A334556/b334556.txt", "Data"][[All, -1]] ]}, f[n_] := NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[n, 2], Length@ # > 1 &]; Array[Block[{n = s[[#]]}, If[# == 0, Nothing, (1 + Floor@ Log2[n] - #)/3] &@ FirstCase[MapIndexed[If[2 #2 > #3 + 1, Nothing, #1[[#2 ;; -#2]]] & @@ {#1, First[#2], Length@ #1} &, f[n][[1 ;; Ceiling[IntegerLength[#, 2]/(2 Sqrt[3])] + 3]] ], r_List /; FreeQ[r, 1] :> Length@ r] /. k_ /; MissingQ@ k -> 0] &, Length@ s - 1, 2] ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, May 12 2020
STATUS
approved