Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jan 27 2019 18:03:21
%S 1,3,8,30,359,72385,4338080222,18448597098193762732,
%T 340282370354622283774333836315916425069,
%U 115792089237316207213755562747271079374483128445080168204415615259394085515423
%N a(n) = Sum_{k = 1...n} k^(2^(n - k)).
%C Number of ways to choose a constant integer partition of each part of a constant integer partition of 2^(n - 1).
%e The a(1) = 1 through a(4) = 30 twice-partitions:
%e (1) (2) (4) (8)
%e (11) (22) (44)
%e (1)(1) (1111) (2222)
%e (2)(2) (4)(4)
%e (11)(2) (22)(4)
%e (2)(11) (4)(22)
%e (11)(11) (22)(22)
%e (1)(1)(1)(1) (1111)(4)
%e (4)(1111)
%e (11111111)
%e (1111)(22)
%e (22)(1111)
%e (1111)(1111)
%e (2)(2)(2)(2)
%e (11)(2)(2)(2)
%e (2)(11)(2)(2)
%e (2)(2)(11)(2)
%e (2)(2)(2)(11)
%e (11)(11)(2)(2)
%e (11)(2)(11)(2)
%e (11)(2)(2)(11)
%e (2)(11)(11)(2)
%e (2)(11)(2)(11)
%e (2)(2)(11)(11)
%e (11)(11)(11)(2)
%e (11)(11)(2)(11)
%e (11)(2)(11)(11)
%e (2)(11)(11)(11)
%e (11)(11)(11)(11)
%e (1)(1)(1)(1)(1)(1)(1)(1)
%t Table[Sum[k^2^(n-k),{k,n}],{n,12}]
%Y Cf. A000123, A001970, A002577, A006171, A279787, A279789, A305551, A306017, A319056, A323766, A323774, A323776.
%K nonn
%O 1,2
%A _Gus Wiseman_, Jan 27 2019