[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323775
a(n) = Sum_{k = 1...n} k^(2^(n - k)).
2
1, 3, 8, 30, 359, 72385, 4338080222, 18448597098193762732, 340282370354622283774333836315916425069, 115792089237316207213755562747271079374483128445080168204415615259394085515423
OFFSET
1,2
COMMENTS
Number of ways to choose a constant integer partition of each part of a constant integer partition of 2^(n - 1).
EXAMPLE
The a(1) = 1 through a(4) = 30 twice-partitions:
(1) (2) (4) (8)
(11) (22) (44)
(1)(1) (1111) (2222)
(2)(2) (4)(4)
(11)(2) (22)(4)
(2)(11) (4)(22)
(11)(11) (22)(22)
(1)(1)(1)(1) (1111)(4)
(4)(1111)
(11111111)
(1111)(22)
(22)(1111)
(1111)(1111)
(2)(2)(2)(2)
(11)(2)(2)(2)
(2)(11)(2)(2)
(2)(2)(11)(2)
(2)(2)(2)(11)
(11)(11)(2)(2)
(11)(2)(11)(2)
(11)(2)(2)(11)
(2)(11)(11)(2)
(2)(11)(2)(11)
(2)(2)(11)(11)
(11)(11)(11)(2)
(11)(11)(2)(11)
(11)(2)(11)(11)
(2)(11)(11)(11)
(11)(11)(11)(11)
(1)(1)(1)(1)(1)(1)(1)(1)
MATHEMATICA
Table[Sum[k^2^(n-k), {k, n}], {n, 12}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 27 2019
STATUS
approved