[go: up one dir, main page]

login
A323586
Number of plane partitions of n with no repeated rows (or, equivalently, no repeated columns).
0
1, 1, 2, 5, 8, 16, 30, 53, 89, 158, 265, 443, 735, 1197
OFFSET
0,3
EXAMPLE
The a(4) = 8 plane partitions with no repeated rows:
4 31 22 211 1111
.
3 21 111
1 1 1
The a(6) = 30 plane partitions with no repeated columns:
6 51 42 321
.
5 4 41 3 31 32 31 22 21 221 211
1 2 1 3 2 1 11 2 21 1 11
.
4 3 31 2 21 22 21 111
1 2 1 2 2 1 11 11
1 1 1 2 1 1 1 1
.
3 2 21 11
1 2 1 11
1 1 1 1
1 1 1 1
.
2 11
1 1
1 1
1 1
1 1
.
1
1
1
1
1
1
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[Reverse@*primeMS, Join@@Permutations/@facs[n], {2}]];
Table[Sum[Length[Select[ptnplane[Times@@Prime/@y], And[UnsameQ@@#, And@@GreaterEqual@@@#, And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]], {y, IntegerPartitions[n]}], {n, 10}]
CROSSREFS
Cf. A000219, A003293 (strict rows), A114736 (strict rows and columns), A117433 (distinct entries), A299968, A319646 (no repeated rows or columns), A323429, A323436 (plane partitions of type), A323580, A323587.
Sequence in context: A026530 A336135 A032254 * A048237 A048139 A357239
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 20 2019
STATUS
approved