[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323323
G.f. Sum_{n>=0} ((1 + 2*x)^n - (1 + x)^n)^n.
1
1, 1, 4, 39, 508, 8651, 180541, 4462875, 127461499, 4129414609, 149614338010, 5994046983553, 263101175224096, 12555981779337615, 647278321588763668, 35845661666812566803, 2122283542537445564169, 133773419366606401021391, 8943959013589398905563475, 632203137717788438029869627, 47105820660836320646061788567, 3690081064592874994757245005533, 303181494230752217882627389578352
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * n^n, where d = 1.406505772593750511415058484128041501018... and c = 0.485030515627129100167196305487639128... - Vaclav Kotesovec, Jan 14 2019
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 39*x^3 + 508*x^4 + 8651*x^5 + 180541*x^6 + 4462875*x^7 + 127461499*x^8 + 4129414609*x^9 + 149614338010*x^10 + ...
such that
A(x) = 1 + ((1+2*x)-(1+x)) + ((1+2*x)^2-(1+x)^2)^2 + ((1+2*x)^3-(1+x)^3)^3 + ((1+2*x)^4-(1+x)^4)^4 + ((1+2*x)^5-(1+x)^5)^5 + ...
PROG
(PARI) {a(n) = my(A=1, X=x+x*O(x^n)); A = sum(m=0, n, ((1 + 2*X)^m - (1 + X)^m)^m); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A068187 A307698 A319177 * A300188 A177775 A364981
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 11 2019
STATUS
approved