[go: up one dir, main page]

login
Heinz numbers of integer partitions that can be arranged into a matrix with equal row-sums and equal column-sums.
9

%I #6 Jan 14 2019 18:25:54

%S 1,2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,36,37,41,43,47,49,

%T 53,59,61,64,67,71,73,79,81,83,89,97,100,101,103,107,109,113,121,125,

%U 127,128,131,137,139,149,151,157,163,167,169,173,179,181,191,193

%N Heinz numbers of integer partitions that can be arranged into a matrix with equal row-sums and equal column-sums.

%C First differs from A137944 in lacking 120.

%C The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

%H <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>

%e 6480 belongs to the sequence because it is the Heinz number of (3,2,2,2,2,1,1,1,1), which can be arranged in the following ways:

%e [1 1 3] [1 2 2] [1 2 2] [1 3 1] [2 1 2] [2 1 2] [2 2 1] [2 2 1] [3 1 1]

%e [2 2 1] [1 2 2] [3 1 1] [2 1 2] [1 3 1] [2 1 2] [1 1 3] [2 2 1] [1 2 2]

%e [2 2 1] [3 1 1] [1 2 2] [2 1 2] [2 1 2] [1 3 1] [2 2 1] [1 1 3] [1 2 2]

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];

%t ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];

%t Select[Range[100],!Select[ptnmats[#],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]=={}&]

%Y Complement of A323304.

%Y Cf. A006052, A007016, A056239, A112798, A120733, A319056, A319066, A321719.

%Y Cf. A323300, A323302, A323347, A323348, A323349.

%K nonn

%O 1,2

%A _Gus Wiseman_, Jan 13 2019