[go: up one dir, main page]

login
A323292
Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have two vertices in common.
4
1, 0, 0, 1, 0, 15, 160, 4125, 193200, 19384225
OFFSET
0,6
FORMULA
Inverse binomial transform of A323293. - Andrew Howroyd, Aug 14 2019
EXAMPLE
The a(5) = 15 hypergraphs:
{{1,2,3},{1,4,5}}
{{1,2,3},{2,4,5}}
{{1,2,3},{3,4,5}}
{{1,2,4},{1,3,5}}
{{1,2,4},{2,3,5}}
{{1,2,4},{3,4,5}}
{{1,2,5},{1,3,4}}
{{1,2,5},{2,3,4}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,5}}
{{1,3,4},{2,4,5}}
{{1,3,5},{2,3,4}}
{{1,3,5},{2,4,5}}
{{1,4,5},{2,3,4}}
{{1,4,5},{2,3,5}}
Non-isomorphic representatives of the 3 unlabeled 3-uniform hypergraphs spanning 6 vertices where no two edges have two vertices in common, and their multiplicities in the labeled case which add up to a(6) = 160:
10 X {{1,2,3},{4,5,6}}
120 X {{1,3,5},{2,3,6},{4,5,6}}
30 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]===0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r===w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n], {3}], Length[Intersection[#1, #2]]>=2&], Union@@#==Range[n]&]], {n, 6}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 10 2019
EXTENSIONS
a(9) from Andrew Howroyd, Aug 14 2019
STATUS
approved