[go: up one dir, main page]

login
A322938
a(n) = binomial(2*n + 2, n + 2) - 1.
2
0, 3, 14, 55, 209, 791, 3002, 11439, 43757, 167959, 646645, 2496143, 9657699, 37442159, 145422674, 565722719, 2203961429, 8597496599, 33578000609, 131282408399, 513791607419, 2012616400079, 7890371113949, 30957699535775, 121548660036299, 477551179875951
OFFSET
0,2
LINKS
FORMULA
Let G(x) = (2*x^2-x+1)/(2*(x-1)*x^2)-(I*(2*x-1))/(2*x^2*sqrt(4*x-1)) with Im(x) > 0, then a(n) = [x^n] G(x). The generating function G(x) satisfies the differential equation 9*x - 16*x^2 + 4*x^3 = (8*x^5 - 22*x^4 + 21*x^3 - 8*x^2 + x)*diff(G(x), x) + (12*x^4 - 36*x^3 + 38*x^2 - 16*x + 2)*G(x).
From Peter Bala, Feb 25 2022: (Start)
a(n) = Sum_{k = 0..n+1} binomial(n+k,k+1).
a(n) = Sum_{k = 0..n-1} binomial(n+k+2,k+1).
More generally, Sum_{k = 0..n+m} binomial(n+k,k+1) = Sum_{k = 0..n-1} binomial(n+k+m+1,k+1) = binomial(2*n+m+1,n) - 1. (End)
a(n) = A001791(n+1) - 1. - Hugo Pfoertner, Feb 26 2022
MAPLE
aList := proc(len) local gf, ser; assume(Im(x) > 0);
gf := (2*x^2 - x + 1)/(2*(x - 1)*x^2) - (I*(2*x - 1))/(2*x^2*sqrt(4*x - 1));
ser := series(gf, x, len+4):
seq(coeff(ser, x, n), n=0..len) end: lprint(aList(25));
MATHEMATICA
Table[Binomial[2 n + 2, n + 2] - 1, {n, 0, 25}]
PROG
(Magma)
[Binomial(2*n+2, n+2) -1: n in [0..30]]; // G. C. Greubel, Apr 22 2024
(SageMath)
[binomial(2*n+2, n+2) - 1 for n in range(31)] # G. C. Greubel, Apr 22 2024
CROSSREFS
Cf. A001791, A014473, A030662 (d=0), A010763 (d=1), this sequence (d=2).
Sequence in context: A151540 A226466 A363964 * A026544 A026527 A037786
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Feb 13 2019
STATUS
approved