[go: up one dir, main page]

login
A322747
a(n) = sqrt(1 + A322746(2*n)).
3
1, 5, 161, 8749, 665857, 65160501, 7793761249, 1101696200669, 179689877047297, 33215554576822501, 6862186181491284001, 1566923219786361397005, 391868347839681254572801, 106523078497331434142611733, 31273034455313887578671676257
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(2*n, 2*k)*(2*n+1)^(n-k)*(2*n)^k.
a(n) = A322790(2*n, n).
a(n) = T_{n}(4*n+1) where T_{n}(x) is a Chebyshev polynomial of the first kind.
a(n) ~ exp(1/4) * 2^(3*n - 1) * n^n. - Vaclav Kotesovec, Dec 25 2018
PROG
(PARI) {a(n) = sum(k=0, n, binomial(2*n, 2*k)*(2*n+1)^(n-k)*(2*n)^k)}
(PARI) {a(n) = polchebyshev(n, 1, 4*n+1)}
CROSSREFS
Sequence in context: A287032 A136368 A229163 * A274712 A117068 A185832
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 25 2018
STATUS
approved